HINDU COLLEGE :: GUNTUR

Name of the Lecturer : Dr. S.V.S. GIRIJA , Lecturer in Mathematics

Assignments 2019-20

S. No.	Student Name	Group	Roll No.	Hallticket No.	Topic of Assignment
1	AMRUTHAPUDI PERAIAH	BA	663	Y171028024	Find the equation of the plane through the point (2,-3,1) and perpendicular to the line joining the points (3,4,-1), (2,-1,5)
2	BELLAMKONDA LEELARAM	BA	653	Y171028025	Show that the four points (0,4,3), (-1,-5,-3), (-2,-2,1), (1,1,-1) are coplanar.
3	BONTHA SRIKANTH	BA	656	Y171028026	Find the equation of the plane passing through the points (2,2,-1), (3,4,2), (7,0,6).
4	BONTHU SUNEETHA	BA		Y171028027	Find the image of the point (2,-1,3) in the plane 3X-2Y-9Z=0
5	CHEERABOINA KALYAN CHAKRAVARTHI	BA	670	Y171028028	Find the foot of the perpendicular from (2,-2,3) to the plane 2X-2Y-Z-9=0
6	GOLI MADAN GOPAL	BA	660	Y171028029	Prove that set of integers \mathbb{Z} with respect to * defined as a*b=a+b+2, is an Abelian Group
7	GUNJARA SURESH	BA	661	Y171028030	Show that cube roots of unity w.r.t. multiplication is an abelian group.
8	KANDUKURI SRIDHAR BABU	BA	669	Y171028031	Show that fourth roots of unity w.r.t. complex multiplication is an abelian group.
9	KASUKURTHI SANJAY BHASKAR	BA	f(x) = x(x-1)(x-2) 652	Y171028032	Show that the set integers {1,5,7,11} form an abelian group with reference to multiplication modulo 12
10	KETHAVATHU HANUMAN NAIK	BA	657	Y171028033	If H and K are two subgroups of a group G, then prove that HK is also a subgroup of G iff HK=KH
11	KORRA SANKARA RAO	BA	654	Y171028034	Prove that any two left (right) cosets of a subgroup are either disjoint or identical.
12	MALLAVARAPU SANDEEP	BA	658	Y171028035	If H is a subgroup of a group G then prove that there exists a one to one correspondence between any two right cosets of H in G.

S. No.	Student Name	Group	Roll No.	Hallticket No.	Topic of Assignment
13	MUKKOLLU SIVAIAH	BA	665	Y171028036	Prove that H is a normal subgroup of a group G iff product of two right cosets of H is again a right coset of H
14	MYLA VENKATA SIVARAMA KRISHNA	BA	664	Y171028037	Define kernel of homomorphism. If f is a homomorphism of a group G into a group G, then show that the kernel of f is a normal subgroup of G.
15	PAGADALA SAI KIRAN	BA	655	Y171028038	1.state and prove Lagranges theorem 2.state and prove cayleys theorem
16	PEDDIBOYINA SUJATHA	BA	659	Y171028039	Prove that H is a normal subgroup of a group G iff product of two right cosets of H is again a right coset of H
17	PINNIKA KATAMRAJU	BA	667	Y171028040	1.state and prove Gauss divergence theorem 2.state and prove Greens theorem
18	RAVIPUDEI SIVA SANKAR	BA	668	Y171028041	1.state and prove Stokes theorem 2.show that curl(gradf)=0
19	RAVURI PAVAN KALYAN	BA	662	Y171028042	1.state and prove Lagranges theorem 2.state and prove cayleys theorem
20	SHAIK JOHNSAIDA	BA	672	Y171028043	1.state and prove fundamental theorem of homomorphism 2.show that nth roots of unity form an Abelian group
21	AVULAMANDA KARTHIK	B.Sc. MPC	232	Y173028110	1. state and prove first shifting theorem. 2. state and prove initial value theorem
22	BATHULA PAVANI	B.Sc. MPC	238	Y173028111	1.state and prove final value theorem 2.state and prove convolution theorem
23	BATHULA SOUBHAGYALAKSHMI	B.Sc. MPC	211	Y173028112	1.state and prove Rolles theorem. 2. state and prove Lagranges mean value theorem.
24	BAVANAM KASEESWARA REDDY	B.Sc. MPC	254	Y173028113	1.state and prove Cauchys mean value theorem 2.state and prove Fundamental theorem of integral calculus
25	BHEEMANADHUNI VEERANJANEYULU	B.Sc. MPC	229	Y173028114	1.state and prove Cauchy-Schwartz inequality 2. state and prove Bessels inequality
26	BULLA ESWAR	B.Sc. MPC	221	Y173028115	1.state and prove Parsevals identity 2.state and prove gramschmidt orthogonalisation process

	CHENNAMSETTI JAGADISWARA RAO	B.Sc. MPC	206	Y173028116	1.find orthonormal basis for the set of vectors {(1,2,3),(2,1,3),(1,1,1)}.2.state and prove cayley _hamilton theorem
28	CHENNAMSETTY KASIM	B.Sc. MPC	250	Y173028117	1. state and prove basis existance theorem 2. state and prove rank-nullity theorem
29		B.Sc. MPC	234	Y173028118	1.state and prove invarience theorem on subspaces .2.show that any two bases have same dimension
	CHINTAKAYALA SAIKRISHNA	B.Sc. MPC	230	Y173028119	1.state and prove basis extension theorem. 2.show that range space of a linear transformation is a subspace of V(F)

HINDU COLLEGE :: GUNTUR

Name of the Lecturer: Y. SREEKANTH, Lecturer in Mathematics

Assignments 2019-20

S. No.	Student Name	Group	Roll No.	Hallticket No.	Topic of Assignment
31	DEVARA ASHOK	B.Sc. MPC	244	Y173028120	1.show that null space of a linear transformation is a subspace of U(F) 2. show that $\dim(\alpha+\beta)=\dim\alpha+\dim\beta-\dim(\alpha \wedge \beta)$
32	DIRISANALA ASHOKREDDY	B.Sc. MPC	219	Y173028121	1.show that dim (V/W) =dimV-dimW 2.If Wis a non empty subset of V then show that W is subspace iff $a\alpha + b\beta E$ V
33	GAJA RAVITEJA	B.Sc. MPC	233	Y173028122	1.state and prove Gauss divergence theorem 2.state and prove Greens theorem
34	GANNEBOYINA GOPIRAJU	B.Sc. MPC	235	Y173028123	1.state and prove Stokes theorem 2.show that curl(gradf)=0
35	GUMMA SIVARAJU	B.Sc. MPC	237	Y173028124	1.state and prove Lagranges theorem 2.state and prove cayleys theorem
36	JONNALAGADDA ABHIRAM	B.Sc. MPC	247	Y173028125	1.state and prove fundamental theorem of homomorphism 2.show that nth roots of unity form an Abelian group
37	KOLUSUPAVANAVENKAT ASIVAGASAIKUMAR	B.Sc. MPC	218	Y173028126	1. state and prove first shifting theorem. 2. state and prove initial value theorem
38	KOTA RAJESH	B.Sc. MPC	242	Y173028127	1.state and prove final value theorem 2.state and prove convolution theorem
39	KOTA SIVA MADHAV	B.Sc. MPC	201	Y173028128	1.state and prove Rolles theorem. 2. state and prove Lagranges mean value theorem.
40	MALLELA SRAVANI	B.Sc. MPC	204	Y173028129	1.state and prove Cauchys mean value theorem 2.state and prove Fundamental theorem of integral calculus
41	MARREDDY VENKATESWARAREDDY	B.Sc. MPC	215	Y173028130	1.state and prove Cauchy-Schwartz inequality 2. state and prove Bessels inequality
42	MATTUKOYYA VAMSI	B.Sc. MPC	248	Y173028131	1.state and prove Parsevals identity 2.state and prove gramschmidt orthogonalisation process

S. No.	Student Name	Group	Roll No.	Hallticket No.	Topic of Assignment
43	MEDABALIMI MAHESH	B.Sc. MPC	227	Y173028132	1.find orthonormal basis for the set of vectors {(1,2,3),(2,1,3),(1,1,1)}.2.state and prove cayley _hamilton theorem
44	MOGILI GANESH	B.Sc. MPC	226	Y173028133	1. state and prove basis existance theorem 2. state and prove rank-nullity theorem
45	MUDRABOINA SRINIVASARAO	B.Sc. MPC	224	Y173028134	1.state and prove invarience theorem on subspaces .2.show that any two bases have same dimension
46	MUTHYALA DIWAKAR	B.Sc. MPC	212	Y173028135	1.state and prove basis extension theorem. 2.show that range space of a linear transformation is a subspace of V(F)
47	NAKKA GOPAIAH	B.Sc. MPC	251	Y173028136	1.show that null space of a linear transformation is a subspace of U(F) 2. show that $\dim(\alpha+\beta)=\dim\alpha+\dim\beta-\dim(\alpha \ \Lambda \ \beta)$
48	NANDIPATI SAI KRISHNA	B.Sc. MPC		Y173028137	1.show that dim (V/W)=dimV-dimW 2.If Wis a non empty subset of V then show that W is subspace iff $a\alpha+b\beta E$ V
49	PERIKALA ANILKUMAR	B.Sc. MPC	207	Y173028138	1.show that every field is an integral domain. 2. show that every finite integral domain is a field
50	PILLI GANGADHARARAO	B.Sc. MPC	220	Y173028139	 show that characterstic of an integral domain is either prime or zero. prove that every boolean ring is commutative.
51	POGULA AJAYKUMAR	B.Sc. MPC	203	Y173028140	1. show that intersection of two ideals of a ring R is also an ideal 2. show that union of two ideals is also an ideal iff one is contained in the other.
52	POSA GOWTHAM	B.Sc. MPC	214	Y173028141	1.Define a principal ideal ring. Show that every field is a principal ideal ring.
53	RAMAVATH CHAKRADHARNAIK	B.Sc. MPC	239	Y173028142	If f is a homomorphism from a ring R into a ring S, then show that Ker f is an ideal of R.
54	RENTALA ANIL	B.Sc. MPC	210	Y173028143	Define maximal ideal of a ring. Show that an ideal M of a commutative ring R with unity is maximal iff R/M is a field.
55	S R BABU	B.Sc. MPC	205	Y173028144	Find the equation of the right circular cone whose vertex at P (2,-3,5), axis PQ which makes equal angles with the axes and which passes through A(1,-2,3).

S. No.	Student Name	Group	Roll No.	Hallticket No.	Topic of Assignment
56	SHAIK KAREEM	B.Sc. MPC	208	Y173028145	Show that the four points (-8,5,2), (-5,2,2), (-7,6,6), (-4,3,6) are concyclic.
57	SHAIK NAZEER BASHA	B.Sc. MPC	253	Y173028146	Find the equation to the sphere through origin and making intercepts a, b, c, on the coordinate axes
58	SHAIK SUBHANI	B.Sc. MPC	255	Y173028147	1.show that every field is an integral domain. 2. show that every finite integral domain is a field
59	THOTA RAJESH	B.Sc. MPC	258	Y173028148	 show that characterstic of an integral domain is either prime or zero. prove that every boolean ring is commutative.
60	THULLURI ASHOK	B.Sc. MPC	202	Y173028149	1. show that intersection of two ideals of a ring R is also an ideal 2. show that union of two ideals is also an ideal iff one is contained in the other.
61	UKKALAPU HARIKRISHNA	B.Sc. MPC	240	Y173028150	1.Define a principal ideal ring. Show that every field is a principal ideal ring.
62	UTUKURI YEDUKONDALU	B.Sc. MPC	257	Y173028151	If f is a homomorphism from a ring R into a ring S, then show that Ker f is an ideal of R.
63	UYYALA RANGASWAMI	B.Sc. MPC		Y173028152	Define maximal ideal of a ring. Show that an ideal M of a commutative ring R with unity is maximal iff R/M is a field.
64	VAVILAPALLI VENKATESH	B.Sc. MPC	222	Y173028153	Find the equation of the right circular cone whose vertex at P (2,-3,5), axis PQ which makes equal angles with the axes and which passes through A(1,-2,3).
65	VEMAVARAPU PRAKASHKUMAR	B.Sc. MPC	236	Y173028154	Show that the four points (-8,5,2), (-5,2,2), (-7,6,6), (-4,3,6) are concyclic.
66	VILASARAPU NAVEEN	B.Sc. MPC	252	Y173028155	Find the equation to the sphere through origin and making intercepts a, b, c, on the coordinate axes